Rapid stiffening of integrin receptor-actin linkages in endothelial cells stimulated with thrombin: a magnetic bead microrheology study.
نویسندگان
چکیده
By using magnetic bead microrheology we study the effect of inflammatory agents and toxins on the viscoelastic moduli of endothelial cell plasma membranes in real time. Viscoelastic response curves were acquired by applying short force pulses of ~500 pN to fibronectin-coated magnetic beads attached to the surface membrane of endothelial cells. Upon addition of thrombin, a rapid stiffening of the membrane was observed within 5 s, followed by recovery of the initial deformability within 2 min. By using specific inhibitors, two known pathways by which thrombin induces actin reorganization in endothelial cells, namely activation of Ca2+-calmodulin-dependent myosin light chain kinase and stimulation of Rho/Rho-kinase, were excluded as possible causes of the stiffening effect. Interestingly, the cytotoxic necrotizing factor of Escherichia coli, a toxin which, in addition to Rho, activates the GTPases Rac and CDC42Hs, also induced a dramatic stiffening effect, suggesting that the stiffening may be mediated through a Rac- or Cdc42Hs-dependent pathway. This work demonstrates that magnetic bead microrheometry is not only a powerful tool to determine the absolute viscoelastic moduli of the composite cell plasma membrane, but also a valuable tool to study in real time the effect of drugs or toxins on the viscoelastic parameters of the plasma membrane.
منابع مشابه
Thrombin and histamine induce stiffening of alveolar epithelial cells.
The mechanical properties of alveolar epithelial cells play a central role in maintaining the physical integrity of the alveolar epithelium. We studied the viscoelastic properties of alveolar epithelial cells (A549) in response to thrombin and histamine with optical magnetic twisting cytometry. Ferrimagnetic beads coated with Arg-Gly-Asp (RGD)-peptide or acetylated low-density lipoprotein were ...
متن کاملReceptor-based differences in human aortic smooth muscle cell membrane stiffness.
Cells respond to mechanical stimuli with diverse molecular responses. The nature of the sensory mechanism involved in mechanotransduction is not known, but integrins may play an important role. The integrins are linked to both the cytoskeleton and extracellular matrix, suggesting that probing cells via integrins should yield different mechanical properties than probing cells via non-cytoskeleto...
متن کاملRegulation of the actin cytoskeleton by thrombin in human endothelial cells: role of Rho proteins in endothelial barrier function.
Endothelial barrier function is regulated at the cellular level by cytoskeletal-dependent anchoring and retracting forces. In the present study we have examined the signal transduction pathways underlying agonist-stimulated reorganization of the actin cytoskeleton in human umbilical vein endothelial cells. Receptor activation by thrombin, or the thrombin receptor (proteinase-activated receptor ...
متن کاملStrain Field Mapping of the Cell Membrane of Endothelial Cells.
We applied a recently developed magnetic bead micro-rheometer (Magnetic Tweezers) to investigate the influence of actin on the properties of the cell membrane of endothelial cells (HUVEC). Superparamagnetic beads of a diameter of 4.5 µm are coated with different integrin-binding proteins (e.g. fibronectin, collagen IV, invasin) and thus linked to the actin cortex. Via an external magnetic coil ...
متن کاملThe effect of microRNA-125 on the adhesion molecule expression of integrin beta2 and adhesive determination of endothelial cells isolated from human aorta to monocyte
Background: The immune-mediated responses in vascular cells may include the increased expression of endothelial adhesion molecules, leukocyte rolling and infiltration, cellular lipid dysregulation and vascular smooth muscle cells (VSMCs) differentiation. Investigating the cellular and molecular events involved in the rolling process is useful for treatment or prevention of the vessel stenosis es...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 80 6 شماره
صفحات -
تاریخ انتشار 2001